

Management of Risks from Dams at Vattenfall

SWEDCOLD Stockholm 2017-04-04

Claes-Olof Brandesten, Head of Dam Safety Stefan Berntsson, Risk Manager Dam Safety

Confidentiality - None

SWEDCOLD: Management of Risks from Dams

Portfolio of Dam Facilities – Dam Safety Classification

River / Water Course	Α	B / 1	C / 2	U / 3	Total
009 Luleälven	7	7	1	2	17
020 Skellefteälven	3				3
028 Umeälven	1	7	3	1	12
038 Ångermanälven		2	5	2	9
040 Indalsälven		6	2	1	9
042 Gimån		2			2
053 Dalälven		3		1	4
061 Norrström			6	36	42
105 Viskan		3	1	10	14
106 Rolfsån				2	2
108 Dalbergsån				3	3
108 Göta älv	1	3			4
108 Säveån			2	2	4
108 Upperudsälven		1	7		8
Totalt	12	34	27	60	133

Systematic Risk Management Process (ICOLD Bulletin 154, Fig 3.4)

Risk is managed in a systematic way

- Management system for all dam safety functions.
- Based on ICOLD Bulletin 154
 - integrated to other systems within Vattenfall Vattenkraft (ISO 14001, OHSAS 18001, ISO 55000)
 - integrated to the four core business processes
 - Planning
 - Modification
 - Maintenance
 - Operation
- Structured system of prioritisation
 - Reflects the vulnerability of the assets, components and parts
 - Transitioning to a systems based functional approach
 - In line with modern trends in dam safety management

BU Hydro Dam Safety Management System is based on a Dam Risk Management Process aligned with ICOLD Bulletin 154

Risk Management of dams as a sub-management system

SWEDCOLD: Management of Risks from Dams

VATTENFALL

Risk management involves control of risk

- The vast majority of risk management activities focus on avoiding failure
 - Need to know the "vulnerabilities" of and within the system
 - Systems
 - System functions
 - Components and component functions
 - Physical
 - Software and communications
 - People as part of the system
 - Failures of components lead to failure of system functions which lead to system failures
- Maintain components and component functions to maintain system functions to control the risk in the system

Focus on Vulnerabilities

- Vulnerabilities of the components leads to functional vulnerabilities
 - Components can be vulnerable to failure to different degrees (magnitudes)

Dam Safety Management Principles

According to the Vattenfall Dam Safety Instruction

- The dam safety work is based on good and cost-effective risk management practices.
- Precautionary principle, implies that precautions are taken in proportion to the degree of uncertainty and the potential consequences of failure.
- Physical strengthening on dams should, where cost effective, be made with extra safety margin.
- Risks should be reduced to "as low as reasonably practicable" (ALARP).
 - This is something to work towards when industry fully understand it
 - Maybe Best Available Technique and Precautionary Principle will do it.
- Structural improvements are in principle preferred over operational restrictions.
- Advances in sciences and technology should contribute to continuous improvements.
- Dam safety management is, from an overall perspective, performed homogeneously across the dam portfolio.

Guiding Documents for Dam Safety

- Vattenfall's Safety Management Principles
- National and International Dam Safety Standards
 - -Laws
 - -Regulation
 - -RIDAS
 - -Guidelines for Design Flood Determination
 - -European Community Directives
 - -ICOLD
 - -other
- Strategic Direction of Vattenfall Vattenkraft
 BU Hydro

Asset management implications for Dam Safety

- Guiding Principles and Policies
- Requirements and Information Inputs
 new needs, new information, feedback
- Analysis
 - -Options
- Priorities
- Optimize across BU Hydro
 - -Dam Safety is highest priority
 - -Risk provides a common language
- Pre-study
- Implement

Vattenfall's Dam Safety Program

ICOLD Bulletin on Dam Safety Management, 2011

- A dam is a system that:
 - Safely retains the stored volume of water and passes all flows through and around the dam in a controlled way
 - This is the "function" of the dam
- Overall, we want to know if a dam is functioning properly
 - This means that all sub-systems and components that are critical to system function must function properly
- Need to inspect all critical sub-systems and components for adequacy of functions
 - Need to make a judgement about how close any component is to complete functional performance

Framework for dam safety analysis – ``Enterprise Architect``

SYSTEMS FRAMEWORK FOR DAM SAFETY ANALYSIS

Functional analysis diagram (from Hartford et al., 2016)

VATTENFALL

Fault tree Model of Hazards and Failure Modes, ICOLD B154

Dam Safety –

Vulnerability index and the functioning of that system

Confidentiality - Medium (C2)

SWEDCOLD: Management of Risks from Dams

the "Setting"

"No or uncertain ..."

Implies an actual or a potential Dam Safety Deficiency.

... many Facilities

Implies that Deficiencies are Identified more or less Continuously ...

 \succ ... and it is not Possible to Fix everything Immediately.

• This Calls for a Systematic Approach ...

In what order should we prioritise Fixes?

... and Resources

Is the rate of Fixing matching the rate of Identification?

the Vulnerability Index

- The Vulnerability Index is a <u>mimic</u> of the <u>failure probability</u>.
- The concept is useful since the theory of the dam safety science is <u>not developed enough</u> to allow us to calculate and use failure probabilities.
- The Vulnerability Index is used for
 - understanding the <u>importance</u> of a safety deficiency,
 - supporting in prioritisation,
 - > providing basis for displaying <u>continuous improvement</u>,
 - > providing basis for analysis of <u>resource needs</u>, and
 - being of use in showing <u>due diligence</u> (skälig aktsamhet), should we need to defense ourselves to a crime that is one of strict liability (which we have for dams).

Dam Safety Deficiencies and Vulnerability Index

- Vulnerabilities are Identified in <u>Inspections and Reviews</u>, carried out at specified intervals, and may also develop during <u>Operation</u>.
- <u>Vulnerabilities</u> are identified regarding
 - dams (water containment function)
 - spillway systems (water release function)
 - emergency preparedness (routines, material & equipment)
 - surveillance (routines & instrumentation)
 - > competence
 - routines & methods (operation, maintenance & modifications)
 - information & documentation.
- A <u>vulnerability index</u> is assessed for each identified dam safety deficiency.
- The Vulnerability indices are <u>simply added to each other</u> to give the overall vulnerability for a dam, dams in a consequence category, or <u>portfolio of dams</u>, (or any other grouping).

Vulnerability Index – What is Assessed for a Deficiency ?

The Assessment factors are

- functional deficiency
 - what is the gap between the performance we have compared to what we should have?
- criticality of the function
 - how critical is the function with regard to redundancy?
- weakness of risk control for the function
 - are we lacking ability to detect malfunction and compensatory systems
- frequency of demand of the function
 - how often may the loading be larger than the remaining function
- the scale is 0 1 for all factors
 - 1 means no function, highest criticality, no risk control and continuous loading
 - 1 is max for a single deficiency,
 - 0 in functional deficiency = no deficiency.

SWEDCOLD: Management of Risks from Dams

Risk & Vulnerability Index and underlying assessment factors

CHARACTERISATION AND PRIORITISATION OF DAM SAFETY DEFICIENCIES AND ISSUES

Portfolio Vulnerability Index - PVI

- The PVI should not be used to define a final target for the dam safety work or for other qualitative statements such as "safe enough".
- The PVI <u>normally increases</u> through Inspections and Reviews as Dam Safety Deficiencies are discovered or re-evaluated.
- The PVI is <u>decreased</u> by <u>maintenance or modifications</u> of the dam, or other improvements.
- In 2011 the goal was

 based on reasoning –
 set to reduce the
 Large Scale PVI
 from 510 to 340
 at the end 2020.

PVI Roadmap – Large and Small Scale Sweden (excl. VB Kraft)

- 2014 the goal was broadened to include Large & Small Facilities.
- 2016 the goal for PVI was revised.

VATTENFALL

Example - Bergeforsen New Spillway

Reducing vulnerability to overtopping - Bergeforsen

Vulnerability reduction options analysis

Policy or Principle/Engineering Principle/ Safety & Reliability/RIDAS/Other Guideline	Option 1 (C)	Option 2 (B)	Option 3 (A)
Policy			
Minimise risk to people and the environment	×	×	×
Minimise risk to people and the environment to a practicable and affordable level	×	×	✓
 Acceptable risk management solution for catastrophic loss risk 	×	×	✓
Accepted by the public	?	?	✓
Readily accepted by the authorities	?	?	Û
Principle – Business Operations (Bergeforsen Kraft AB, based on E.On and Vattenfall)			
Risk-informed dam safety decisions in terms of modern risk assessment practice for dams	×	×	~
Engineering Principle			
Changes improve overall functionality when practicable (no adverse effects allowed)	×	?	~
Passive Operation with no active management controls to ensure function	×	×	×
Active Operation with no active management controls to ensure function	×	×	✓
Functionality not conditional on active management controls over a hazard	×	×	~
Conventional Engineering Solution	×	×	~
Safety and Reliability Principle			
Redundancy	×	~	~
Diversity	×	×	×
Segregation	×	~	✓
Defence in Depth	×	×	✓
Fault Tolerant	×	Û	⇔
Fail to a Safe Condition	×	Û	ß
Engineering Guidelines			
Service function (normal + moderate floods) separate from auxiliary function (design flood)	×	✓	~
Service function compliments other hydraulic functions and auxiliary function	×	?	~
Auxiliary capacity based on economics with possible reduction in auxiliary functionality only	?	✓	~

Managing the hydraulic function risk during improvement

